Finding Genes in DNA with a Hidden Markov Model
نویسندگان
چکیده
This study describes a new Hidden Markov Model (HMM) system for segmenting uncharacterized genomic DNA sequences into exons, introns, and intergenic regions. Separate HMM modules were designed and trained for specific regions of DNA: exons, introns, intergenic regions, and splice sites. The models were then tied together to form a biologically feasible topology. The integrated HMM was trained further on a set of eukaryotic DNA sequences and tested by using it to segment a separate set of sequences. The resulting HMM system which is called VEIL (Viterbi Exon-Intron Locator), obtains an overall accuracy on test data of 92% of total bases correctly labelled, with a correlation coefficient of 0.73. Using the more stringent test of exact exon prediction, VEIL correctly located both ends of 53% of the coding exons, and 49% of the exons it predicts are exactly correct. These results compare favorably to the best previous results for gene structure prediction and demonstrate the benefits of using HMMs for this problem.
منابع مشابه
Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملEnhancements to Hidden Markov Models for Gene Finding and Other Biological Applications
In this thesis, we present enhancements of hidden Markov models for the problem of finding genes in DNA sequences. Genes are the parts of DNA that serve as a template for synthesis of proteins. Thus, gene finding is a crucial step in the analysis of DNA sequencing data. Hidden Markov models are a key tool used in gene finding. Yhis thesis presents three methods for extending the capabilities of...
متن کاملComputational Identification of Exons in Dna with a Hidden Markov Model
The number of DNA sequences has been growing fast. There are computational methods for finding genes from DNA sequences, but still there is a need for more accurate algorithms. This study describes a new method for finding protein-coding regions in anonymous sequences of DNA, more specifically it identifies the exons regions. The idea of the new method is to use the framework of Hidden Markov M...
متن کاملمدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان
Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...
متن کاملPredicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm
Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 4 2 شماره
صفحات -
تاریخ انتشار 1997